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The problem of transient free convection in a porous medium adjacent to a vertical 
semi-infinite flat plate with a simultaneous step change in wall temperature and wall 
concentration is investigated. Nondimensionalization of the transient boundary-layer 
equations results in three governing parameters: (1) Le, the Lewis number, (2) N, the 
buoyancy ratio, and (3) ~, the value of the porosity of the porous medium divided by the 
ratio of heat capacity of the saturated porous medium to that of the fluid. The resulting 
nonlinear partial differential equations are solved by an explicit finite-difference method. 
The numerical results are presented for 0.3 < Le < 100, 0 < N_< 10, and for e = 0.5, 1, and 2. 
It is shown that for a given Le and e the time required to reach the steady state decreases 
as/V increases; for a given/V and e, when Le < 1, the time decreases as Le increases, while 
for L e > l ,  the reverse trend is true; and for a given N and Le, the time increases as 
increases. The final steady-state profiles are in good agreement with similarity solutions. 
Moreover, a simple relation of predicting the length of time for which a one-dimensional 
heat/mass transport will exist is obtained. 
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I n t r o d u c t i o n  

There are many free convections in porous media which occur 
in natural and in technological applications in which flows are 
simultaneously driven by the differences in temperature and 
concentration. The applications include the migration of 
moisture through air contained in fibrous insulations and 
grain storage installations, and the dispersion of chemical 
contaminants through water-saturated soil. 

Bejan and Khair 1 obtained the similarity solutions for 
the vertical steady natural convection boundary layer flow 
in a porous medium resulting from the combined buoyancy 
mechanism. The steady natural convection phenomenon occur- 
ring inside a porous enclosure with both heat and mass transfer 
from the side was studied by Trevisan and Bejan. 2 

Johnson and Cheng 3 presented the first paper on the transient 
boundary layer flow over an inclined flat surface in a porous 
medium without mass transfer. The similarity solutions are 
obtained for specific variations of wall temperature in both time 
and position. Ingham, Merkin, and Pop 4 used the asymptotic 
expansion to investigate the transient free convection flow past 
a suddenly cooled vertical flat plate surface in a porous medium 
without mass transfer. Cheng and Pop 5 employed an integral 
method to analyze the transient free convection boundary layer 
in a porous medium without mass transfer adjacent to a semi- 
infinite vertical plate with a step change in wall temperature or 
surface heat flux. Recently, a related problem of steady and 
unsteady free convection boundary layer flow past a semi- 
infinite flat plate, where the wall temperature varies as a power 
of the distance from the leading edge of the plate, was studied by 
Ingham and Brown. 6 A numerical solution was also presented 
that matches the small and large time solutions. 

The purpose of this paper is to investigate the transient 
laminar free convection, involving the simultaneous effects of 
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heat and mass transfer, about a vertical flat plate embedded in 
a porous medium, with a step change in temperature and 
concentration. The partial differential equations describing the 
conservation of mass, momentum, energy, and concentration 
were solved in their time-dependent form by an explicit finite- 
difference technique. Representative transient velocity, tempera- 
ture and concentration profiles, along with the transient average 
Nusselt and Sherwood numbers, are presented for various 
values of the governing parameters. As might be expected, the 
results for a porous medium resemble those for a viscous fluid. 7 
However, there are some differences, notably those arising from 
the boundary conditions and governing equations that differ 
in the two problems. 

Mathematical  analysis 

The physical model considered in the present paper consists of 
a semi-infinite vertical flat plate which is embedded in a 
saturated porous medium. The plate is initially situated in a 
porous medium saturated with quiescent fluid at uniform 
temperature Too and concentration C®. Then the temperature 
of the plate is suddenly subjected to a step change from T o to 
Tw at time t =0.  Simultaneously the surface concentration is 
changed from Co to Cw. Consideration is given to this transient, 
laminar flow with simultaneous heat and mass transfer along 
the vertical plate. 

The following conventional assumptions simplify the analysis. 
(1) The physical properties are considered to be constant, except 
for the density term that is associated with the body force. (2) 
Flow is sufficiently slow so that the convecting fluid and the 
porous matrix are in local thermodynamic equilibrium. (3) The 
processes occur at low concentration difference such that the 
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diffusion-thermo and thermodiffusion effects and the interfacial 
velocity due to mass diffusion can be neglected. (4) Darcy's law 
and the Boussinesq and boundary layer approximations are 
employed. 

The transient equations that account for the conservation of 
mass, momentum, energy, and concentration according to the 
above assumptions are 

0u-t- 0v=0  (1) 
0x 0y 

O u _ p ~ K (  OT 0C' 

OT OT OT 02T 
a - - + u - - + v - - = a - -  (3) 

dt 0x 0y 0y 2 

0C 0C 0C 02C 
dp -ff~ + U ~x + V ~y = D --oy 2 (4) 

where the x-coordinate is measured upward along the plate 
from the leading edge, and the y-coordinate is measured 
outward normal to the plate; u and v are Darcy's velocity in 
the x- and y-directions; K is the permeability of the saturated 
porous media; a and D represent the equivalent thermal and 
mass diffusivities; fir and fic are the coefficients for thermal and 
concentration expansion; a is the ratio of heat capacity of the 
saturated porous medium to that of the fluid; and ~b denotes 
the porosity. The other symbols are defined in the Notation. 

The associated initial and boundary conditions for Equations 
1-4 are simple if we neglect any induced velocity at the surface 
caused by the mass diffusion effect. They are 

t = 0 :  u = v = 0 ,  T= Too, C=C~ 

x - 0 :  u=0 ,  T= Too, C=C~ 
(5) 

y - 0 :  v=0,  T=T~, C=C~, 

y~oo: u~O, T~T~,  C~Coo 

The nondimensional variables are 

t x Y = y Ra1L/2 
"c = ~L 5 RaLa, X = ~ ,  L 

uL vL 
U = - -  V = - -  (6) 

RaLct' Ra~/2a 

O= T--T~ 2 -  C - C ~  
Tw--To~' Cw-C~ 

where L is the characteristic length of the plate and RaL= 
gKLfir(T w-  T®)/av is the modified thermal Rayleigh number. 
In terms of these variables, Equations 1-4 can be expressed as 

OU OV 
- -  + - -  = 0 ( 7 )  
OX OY 

U=O+N2 (8) 

00+ U c~O0+ V 00 _ 020 (9) 
Oz OX OY OY 2 

eO2+UO2+V____ 0 2 _  1 022 (lO) 
Or OX OY Le 0Y 2 

where Le=~/D is the Lewis number, e=dp/a, and N is the 
buoyancy ratio, defined as N=fic(Cw--C~)/fir(T w-  T~). This 
quantity measures the relative significance of species and 
thermal diffusion in causing the density variation which drives 
the flow. Note that N is zero for no species diffusion, infinite 
for no thermal diffusion, and positive for both effects combining 
to drive the flow. The corresponding initial and boundary 
conditions are 

z=0 :  U=V=O=2=O 

X = 0 :  U = 0 = 2 = 0  
(11) 

Y=0:  V=0,  0 = 2 = 1  

Y ~ :  U ~ 0 ,  0, 2--*0 

In general, the Nusselt and Sherwood numbers are used to 
describe heat and mass transfer characteristics. In the present 
analysis, the local Nusselt and Sherwood numbers, varying 
along the plate, are 

q" 
(00~ Ra[/Zx (12) X 

Nux - T w -  T~ k \ 0  Y/~ = o 

N o t a t i o n  

C Concentration 
D Mass diffusivity 
g Gravitational acceleration 
J" Mass flux rate 
k Thermal conductivity 
K Permeability 
L Characteristic length of the flat plate 
Le Lewis number--- al D 
N Buoyancy ratio parameter = fic(Cw- Coo)/fir(Tw- Too) 
Nux Local Nusselt number 
N-u~. Average Nusselt number 
q" Heat flux rate 
RaL Thermal Rayleigh number = Kgl_fi r(Tw- Too)/av 
Sh x Local Sherwood number 
gli L Average Sherwood number 
t Time 
T Temperature 
u, v x- and y-velocity components 
U, V Dimensionless x- and y-velocities 

x, y Cartesian coordinate along and normal to the plate 
X, Y Dimensionless Cartesian coordinate along and normal 

to the plate 

Greek symbols 
Thermal diffusivity of fluid-saturated porous medium 

fic Volumetric coefficient of expansion with concentration 
f i  Volumetric coefficient of thermal expansion 
# Viscosity 
v Kinematic viscosity 
p Density 
a Heat capacity ratio 
r Dimensionless time 
0 Dimensionless temperature = ( T -  T~)/(Tw- Too) 
2 Dimensionless concentration = (C - Coo)/(Cw- Coo) 
q~ Porosity 

~/~ 

Subscripts 
x Local property 
w Wall property 
oo Porous reservoir property 
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j,, 
(632'] Ra[/2X (13) X 

S h x - c w - c ~  D \OY/r= o 

It is of practical interest to determine the average Nusselt and 
Sherwood numbers for heat and mass transfer calculations. 
These two quantities are given by 

00 
~L=-Ra~ /2  f~ ( ~ ) r = o d X  (14) 

S l i t = - R a [ / 2  f [  \OY,/r=o(02~ dX (15) 

During the initial period of the transient, before the leading 
edge effect is felt, the V-velocity and the X-derivative terms of 
the U-velocity, temperature, and concentration in Equations 
7-10 are zero, resulting in one-dimensional heat and mass 
diffusion flow. Thus, before the leading edge is felt, the 
governing Equations 7-10 reduce to 

U=O+N2 (16) 

630 6320 
- ( 1 7 )  

63"c 63Y 2 

632 1 822 
e 63z Le OY 2 (18) 

Therefore, for very short times, pure heat conduction and pure 
mass diffusion can completely describe the heat and mass 
transfer mechanisms. It is easily shown that during the one- 
dimensional portion of the transient, the following closed-form 
solutions for Equations 17 and 18, subject to the initial and 
boundary conditions 11, can be obtained: 

0 =-erfcIY (~)1/21 (19, 

x=erfcF-r ( Lel" l (2o) 
L 2 \ ~ J  J 

where erfc is the complementary error function. Substituting 
Equations 19 and 20 into Equations 14 and 15 lets us express 
the average Nusselt and Sherwood numbers analytically for the 
initial transient period as follows: 

~ / f R a L  1/2 = (1/~zz) 1/2 (21) 

STiLRa[/2 = (eLe/nz) 1/2 (22) 

The question of the time duration of the one-dimensional 
transient in Newtonian fluid has been extensively studied in 
Refs. 8-10. In Ref. 8 Goldstein and Briggs suggested that a 
leading-edge effect, which would locally terminate the pure 
conduction/diffusion phase on a surface of finite length, propa- 
gates up the surface in time t a distance 

L Xp .. . .  = maximum value of u(t) dt (23) 

where Xp,m.~ is the maximum value of the integral for a given 
t. This distance is then employed to estimate the transition 
time, at which point the one-dimensional pure conduction/ 
diffusion solution will be no longer applicable locally, since the 
leading-edge effects are felt and true convection then takes place. 
Since the Darcian fluid is considered in the present problem, 
the maximum value of the velocity u(y, t) during the initial 
one-dimensional transient occurs on the surface of the plate, 
and it can be directly obtained from Equation 16 as follows: 

Up .. . .  (Y, "r)= 1 + N  (24) 

Substituting Equation 24 into Equation 23 and then integrating, 
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have 

Xp .. . .  = (1 + N)z (25) 

N u m e r i c a l  s o l u t i o n  p r o c e d u r e  

The system of Equations 7-10, together with their corresponding 
initial and boundary conditions, Equation 11, is solved by using 
an explicit finite-difference scheme similar to that used in Refs. 
11-13. Second-order derivatives are written in central differences, 
forward differences are used for first-order derivatives in Y and 
z, and backward differences are used for X-derivatives. The 
flow region adjacent to the surface is divided into an m x n 
nonuniform grid in the X- and Y-directions, respectively. The 
derived finite-difference equations are then solved at each grid 
point in the flow field by marching forward in time. 

Since the explicit procedure is employed, the time step Az is 
restricted due to stability considerations. Using the analysis 
prescribed in detail by Carnahan et al. 14 and Anderson et al., ~5 
we can easily show that 

A r < m i n ~ [ U + l V [ +  2 _1-1, 
- ( l a x  AY (AY)'~J 

1 2 - ( 2 6 )  

L~LAX AY Le 

This stability criterion is independent of N. 
At any given time, the local Nusselt and Sherwood numbers, 

Equations 12 and 13, are obtained by five-point approximations 
for the expansion of the derivatives (d0/a Y)r = o and (d2/a Y)r = o" 
As to the evaluation of the average Nusselt and Sherwood 
numbers, Equations 14 and 15 are integrated by using the 
Simpson's rule to obtain values for N ~  and ~]i L. 

From a series of preliminary computations with different grid 
sizes and time steps, the following mesh sizes, with grid ofm = 23 
and n=49,  are adopted: 

AX=0.02 (0<X<0 .2 )  

AX = 0.06 (0.2 < X < 0.6) 

AX=0.10 (0 .6<X< 1.0) (26) 

AY=0.10 (0< Y<2) 

AY=0.40 (2< Y<10) 

AY=0.50 (10< Y< 14) 

The time step Az is varied between 0.0005 and 0.001, depending 
on the chosen mesh sizes, Le numbers, and e, to ensure the 
stability and accuracy of the numerical scheme. In order to 
check convergence of the finite difference solutions, the spatial 
grid sizes are doubled, accompanied by a change in Az, and 
the results for the two solutions are compared. Table 1 presents 
the average Nusselt/Sherwood numbers in increasing time 
values for e= 1, N = 2 ,  and Le= 1, calculated with grids of 
23 x 49 and 45 x 97, and uniform time steps A~ of 0.001 and 
0.0005. It indicates that the differences of the respective average 
Nusselt/Sherwood numbers among the choices for grid sizes 
and time steps described in Table 1 are less than 3%. It is also 
shown that decreasing the time step and increasing the grid 
number result in a change in the transient local temperature 
and concentration profiles across the boundary layer of not 
more than 1%. However, the use of the finer mesh and smaller 
time step will require much more memory and a sixfold increase 
in computation time. The value Y= 14 is considered to represent 
Y~  ~ after some preliminary investigations. 

The convergence criterion employed for reaching the steady- 
state solution is of the form 7,, .+ 1_ 7_". < 6, where the super- - - t , j  - - l , J  
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Table 1 Transient average Nusselt/Sherwood numbersfor 
different grid size and time step (N=2, Le= l , and  5=1) 

~ ~ ~ + ~ 0 . 0 0 1  0.0005 0.0005 

23 × 49 45 x 97 23 x 49 

0.050 2.39625 2.35733 2.40364 
0.100 1.86989 1.82859 1.87233 
0.150 1.66341 1.62600 1.66463 
0.200 1.55519 1.52103 1.55591 
0.300 1.44943 1.41850 1.44997 
0.400 1.40580 1.37637 1.40597 
0.500 1.38772 1.35989 1.38780 
0.600 1.38011 1.35351 1.38014 
0.700 1.37411 1.35077 1.37667 
0.800 1.37394 1.34943 1.37492 
0.900 1.37335 1.34870 1.37394 
1.000 1.37297 1.34827 1.37335 
1.100 1.37272 1.34799 1.37297 
1.200 1.37254 1.34782 1.37272 
1.300 1.37242 1.34770 1.37254 
1.400 1.37232 1.34761 1.37242 
1.500 1.37226 1.34755 1.37233 
1.600 1.37221 1.34751 1.37226 
1.700 1.37218 1.34748 1.37221 
1.800 1.37215 1.34746 1.37218 
1.900 1.37213 1.34744 1.37215 
2.000 1.37211 1.34742 1.37213 
2.100 1.37209 1.34741 1.37211 
2.200 1.37208 1.34740 1.37209 
2.300 1.37208 1.34740 1.37208 
2.400 1.37207 1.34739 1.37208 
2.500 1.37207 1.34739 1.37207 

2.4, 

2.2. ~ : 1  

2.0" Le : I 
"~ 1.8. 

"~ 1.4. N = l0 

1.2. 
1.0. 4 

0.8. 

z 0.6.  ~ _  o 
0.4. f 

pure heat /mass  diffusion, Eqs. (19),(20) 
0 . 2  , , , , , i , , , , , , , | , , i , , 

0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 1.8 

T 

Figure I The effect of N on the local Nusselt/Sherwood numbers 
a t X = l  for Le= l  a n d s = l  

scripts refer to the number of time steps, the subscripts to the 
location, and Z represents dependent variables (i.e., velocity, 
temperature, and concentration). The value of ~ is chosen to 
be 10 -a.  

Results and discussion 

Numerical results are obtained for Le from 0.3 to 100, N from 
0 to 10, and for e=0.5,  1, and 2. Figure I shows the effect of 
N on the pure conduction/diffusion duration time for Le=  1, 
e = 1, and X = 1. It is seen that the time at which the transport 
changes from the pure conduction/diffusion to convection at a 

position X decreases with increasing N. This finding can also 
be verified from the closed-form solution, Equation 25, of the 
one-dimensional transient. Equation 25 shows that at X = 1 the 
time intervals for which the pure conduction/diffusion might 
be expected to apply locally for N = 10, 4, 2, 1, and 0 are 0.09, 
0.2, 0.333, 0.5, and 1, respectively. These analytical predictions 
are in good agreement with the finite difference results as seen 
from Figure 1. Equation 25 indicates that the pure conduction/ 
diffusion time period is independent of Le. The finite difference 
solutions confirm this prediction, as shown in Figure 2. 

Figures 3(a)-(c) show, respectively, the representative transient 
velocity, temperature, and concentration profiles for Le=  5, 
N = 0 ,  N = 2 ,  and e= ! at X =  1. The similarity solutions for the 
steady-state flow obtained by Bejan and Khair t are also 
included for comparison. It is seen that the finite-difference 
solution results for the steady state are in excellent agreement 
with the similarity solutions.t It is observed, from Figures 3(b), 
(c), that for very small times the temperature and concentration 
profiles for N = 2 are identical to those for N = 0 at each time 
step for a specified Lewis number. This is due to the fact that, 

1.5 

1.4 ~ Le 

1.3 e : l  
1.2 N=2  
1.l 
1.0 

~ 0.9 
0.8 =0"51 

0.7 ~ _  
Z 0.6 

0.5 
0.4 
0.3 pure heat conduction, Eq. (19) 

0 . 2  | i , i , ! , , v , , , , , , i , 

0 0.2 0.4 0.6 0.8 1 1.2 1.4. 1.6 1.8 2 

r 

Figure 2 The effect of Le on the local Nusselt numbers at X=  1 
for N = 2  and e = l  

3.0 
2.8-~ e = l  
26: :~  L e = 5  

• - N = 2  
2.4 - N =  0 

2.02.2 ....1~ O similarity solution ~13 

1 " 8 t / / l  U 1 6 r=O. 1 , 0.2 , 0.6 , s - s  

1.2 
1.0 
0.8 

0.6 

0.4 t 
0.2t o _  

0.01 , - ' : - - - -  - 
0 1 2 3 4 5 

Y 

Figure 3(a) The time variation of the transient velocity profiles at 
X=  1 for different values of N; Le = 5, ~ = 1 
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1.0 

0.9- L e  : 5 
- N = 2  

0 .8 -  a~\ " N = 0  

0.7- ~,~\\\ O similarity solution (1~ 

0 . 6 -  ~l\ I~ r = 0 . 1  , 0.2 , 0.6 , s - s  

0 0"5" / ~ i \ /  

0 ,  

0 . 3 -  

0.0 , , , 

2 3 4 

Y 

Figure 3(b) The time variation of the transient temperature profiles 
at X = I  for different values of N; Le=5,  e = l  

1 . 0  ° 

0'9- ~ Le = 5 
N = 2  

0.8- \ N = 0  

0.7. ,~//~\\ O similarity solution(13 

0.6- \ 

0.5. t, ~ r=O.1 ,  0 .2 ,0 .6 ,  s-s 

0.4- 

0'3. ,Q 

0.2. ~ % \ \ \  

0.1" " N x ~ x  "e" ~ ... 

0 ,0  I I I I I I I I I I I ! I I I I I t 

0 0.2 0.4 0'6 0'8 1 1.2 1.4 1.6 1.8 2 
Y 

Figure 3(c) The time variation of the transient concentration 
profiles at X= 1 for different values of N; Le = 5, e = 1 

at the initial transient, the flowfield is dominated by the one- 
dimensional heat/mass transport,  so convection effects are 
negligible. 

The parameter N does not  appear in Equations 19 and 20; 
therefore the one-dimensional  heat/mass transport  period is 
independent of N. However, N plays a prominent  role during 
the full transient period in velocity, as shown in Figure 3(a). 

Figures 4(a), (b) show the transient average Nusselt and 
Sherwood numbers  under  different values of N for e = 1 and 
for Le=0.5 ,  5, respectively. It is seen that, for a given Le, a 
larger N gives rise to higher transient average Nusselt and 
Sherwood numbers.  For  a given N and e =  1, the transient 
Nusselt number  is larger than the Sherwood number  for Le < 1, 
smaller for L e >  1, and identical for L e =  1. 

The influence of Le number  on the transient average Nusselt 
and Sherwood numbers  for N = 2  and e =  1 is exhibited in 
Figures 5 and 6, respectively. An inspection of these figures 
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reveals that, for a specified N, the Nusselt number decreases 
as Le increases but Sh increases as Le increases. That is due 
to the fact that a larger Lewis number is associated with a 
thicker thermal boundary layer and a thinner concentration 
boundary layer, and the thicker the thermal/concentration 
boundary layer, the smaller the surface heat/mass transfer rates. 

2.6-  

2.4- 
"~ .., Z.2- 

'~ 2.0- \ 
-, 1.8- 

1.6- 
% ~  1.4. 

~ 1.2. 
1.0. 

Z 0'8. 

0.6. 

0.4. 

0.2- 

average Nusselt  number 
average Sherwood number 

. . . . . . .  

x Q 

~- - - -~__  . . . . . . . . . . .  

0.2 0.4 0.6 0.8 1 1.2 ].4 1.6 1.8 

Figure 4(a) The effect of N on the transient average Nusselt and 
Sherwood numbers for Le=0.5 and e= 1 

6.0 

5.0 

.4.0 

~3.0 

2.0 
\ 

;~1.0 

0.0 

I 

II average Nus selt number 

average Sherwood number 

~-~. N = 4  
\ ' %  . . . . .  

~\ .,.. . . . . .  2 

~ ~  4g ° 

i i i , = i i i i i i i ! | i w i ! 

0.2 0.4 0.6 0.8 l 1.2 1.4 1.6 1.8 

Figure 4(b) The effect of N on the transient average Nusselt and 
Sherwood numbers for Le = 5 and ~= 1 

2 .6  

2 . 4  ¢ : 1  
2 . 3  

2.2 N= 2 
2 . 1  
2 . 0  
1 . 9  

\1.6-1 ~ 1.51 Le = ~.5 
Z L 4 "  1 

1 .1  
1 . 0  
0 . 9  

o.8 ' 0 2 '  0 4 '  0 6 '  ' 1.2' I I  1.6 1.8 o i i i : . . . . .  

t -  

Figure 5 The effect of Le on the transient average Nusselt numbers 
for N = 2  and s = l  
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16.0 
15.0- 
14.0- ~ = 1 

13.0- N= 2 
12.0  - 

1 1 . 0 -  L e  = 100 
10.0  - 

~ , ,  9 . 0 -  
50 8.0- 

.~ 6.o- 
m 5.0- 10 

4 . 0 -  
3.0. 5 
2.0. ~ I 
1.0. 

O.~i 0.0 i i = i i , i , i = i , i i i i i i i 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Figure 6 The effect of Le on the transient average Sherwood 
numbers for N = 2  and e = l  

9 '  

~ L e = 5  
1- 

. . . . . .  L e = l  
6 -  r = 2  

"~  5" 1 

1 , , , , , , 

0 .1  0 . 5  1 1 .5  ? 3 

c 

Figure 8 The effect of e on the transient average Sherwood 
numbers for N=2,  Le=I, and Lo=5 

2.0  

1 , S  ~l & L e : 5  

" ~ K ' ~ N  L e = I  

: 0 . s  

1 . 2  

1 . 0  ! I ! 
o. 1 o . s  1 2 

r 

Figure 7 The effect of e on the transient average Nusselt numbers 
for N=2, Le= l ,  and Le=5 

The time variations of the transient average Nusselt and 
Sherwood numbers are presented in Figures 7 and 8, respectively, 
for e = 0.5, 1, and 2. The parameter e plays a pronounced role 
during the entire transient period, and its influence diminishes 
only when the steady-state condition is reached. It is also 
observed from the figures that the time required to reach the 
steady state increases as e increases. 

The time required to reach steady-state conditions for various 
values of N and Le and for e = 1 is summarized in Table 2. For  
a given Le, it decreases with increasing N. And for a given N, 
an increase of Le results in a longer transient durat ion time as 
Le >_ 1, but in a shorter one as Le < 1. 

Conclusions 

A numerical study has been conducted to analyze the transient 
laminar natural  convection, resulting from the combined effects 
of heat and mass transfer, along a vertical fiat plate embedded 
in a porous medium subjected to a step change in surface 
temperature and concentration. The finite-difference results 
indicate that, for a given Le and e, the time required to reach 
the steady state decreases as N increases; for a given N and e, 
when Le < 1, the time decreases as Le increases, while for Le > 1, 
the reverse trend is true; and for given N and Le, the time 
increases with an increase of e. The final steady-state profiles 
are in good agreement with the similarity solutions. 1 

Table 2 The dimensionless time required to reach steady-state 
conditions for various N and Le and e = 1 

N 0 1 2 4 10 
Le 

0.3 3.243 3.156 2.712 2.198 1.483 
0.5 3.243 2.690 2.289 1.800 1.217 
1. 3.243 2.434 2.053 1.652 1.163 
5. 3.243 2.766 2.445 2.008 1.376 

10. 3.243 2.995 2.815 2.534 1.966 
50. 3.243 3.152 3.088 2.995 2.805 

100. 3.243 3.182 3.139 3.076 2.951 

A simple relation, Xp . . . .  = ( I + N ) z ,  is obtained for the 
propagation of the leading-edge effect. The finite-difference 
solutions during the initial transient are in good agreement with 
the theoretical prediction. Before this transition occurs, heat 
transfer is by conduction only and mass transfer is by diffusion 
only. 
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